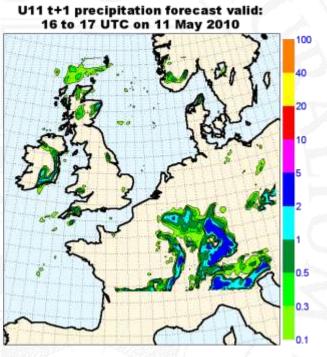


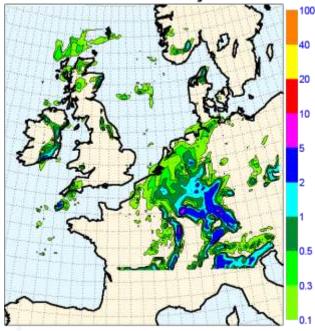
WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Emerging GNSS based tropospheric products

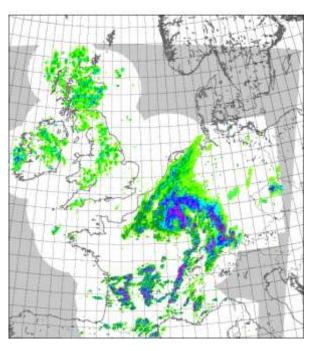

Jaroslaw Bosy, Witold Rohm, Jan Kaplon, Tomasz Hadas, Karina Wilgan, Pawel Hordyniec, Krzysztof Sosnica, Kamil Kazmierski, Jan Sierny

The 7th China Satellite Navigation Conference, May 18-20 Changsha China, Session F3: CSNC – CPGPS PANEL

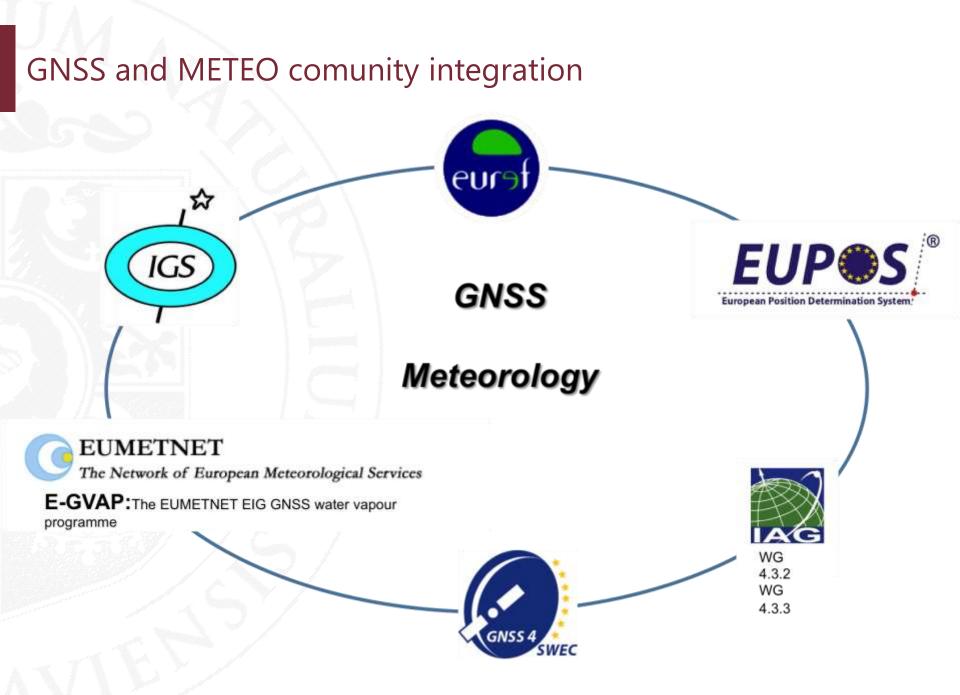
Presentation plan


- 1. Introduction and motivation
- 2. Near Real Time PPP GNSS service
- 3. Real Time PPP GNSS service
- 4. RO GNSS service
- 5. GNSS tomography service
- 6. GNSS and NWP data integration
- 7. Conclusion

GNSS NRT ZTD assimilation in NWP

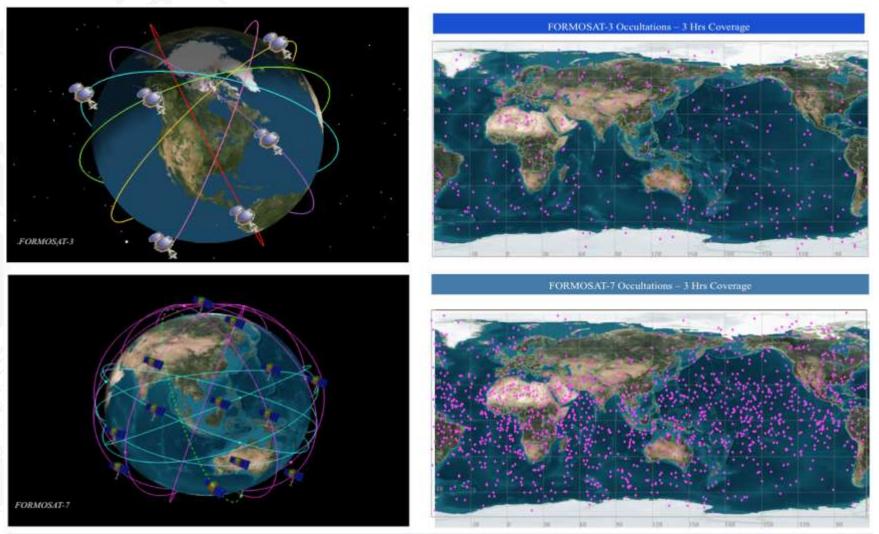


Forecast without GPS


U11gps t+1 precipitation forecast valid: 16 to 17 UTC on 11 May 2010

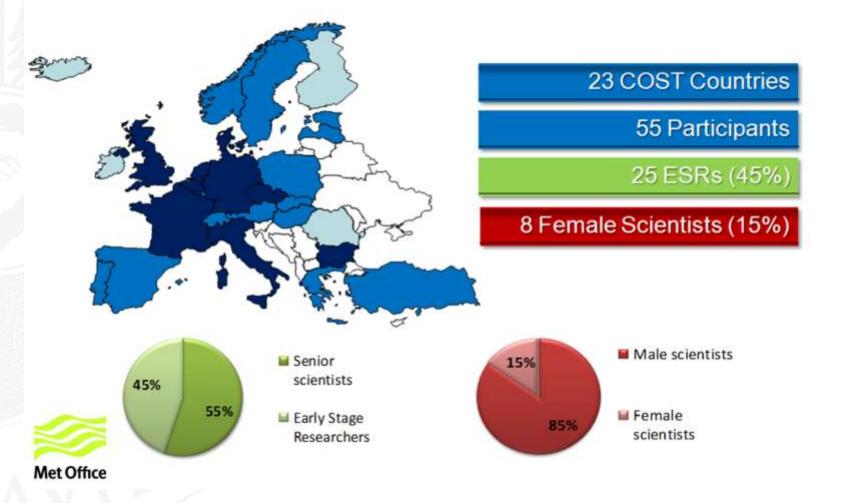
Forecast <u>with</u> GPS (source Siebren de Haan KNMI) radar uursom 2010051117

Radar composite


Growing ground-based infrastructure – CORS

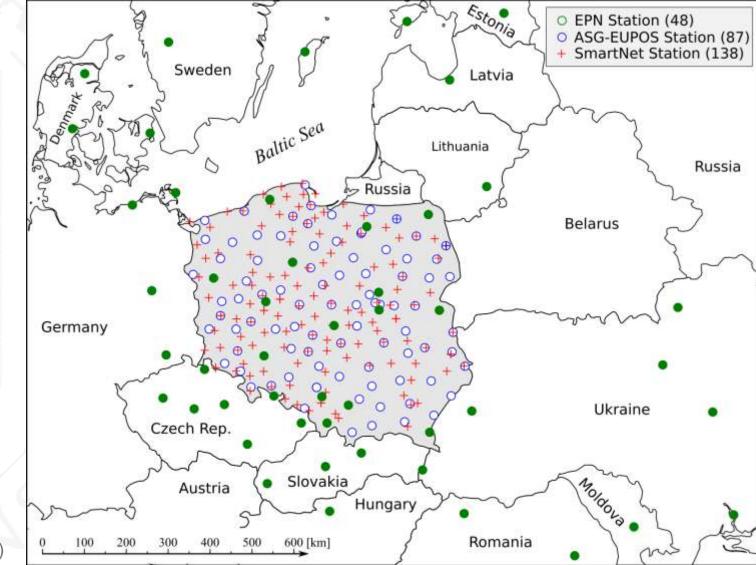
- E-GVAP (~2500 GNSS stations) dedicated processing for meteorology
- Interesting example of geodesy and meteorology collaboration
- Near real-time processing with quality control
- BUFR and COST format export for EUMETNET consortium members
- WUELS hosts GNSS processing centre for Poland

New satellite mission e.g. COSMIC II


6 satellite on low inclination angle (2016), 6 satellite in high inclination orbits (2018), P NOAA + NSPO programme, 12,000 profiles per day

Źródło: www.cosmic.ucar.edu, credicts: NSPO - Taiwan

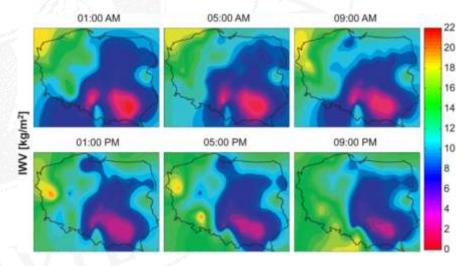
COST Action ES1206 - GNSS4SWEC - Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (http://gnss4swec.knmi.nl)


New "WUEL" network (ASG-EUPOS + SmartNet)

Since Aug 26, 2015 12:00 UTC (BSW 5.2)

NRT DD processing details

Parameter	Value			
Processing type	Post-processing (Double-differenced)			
Satellite system considered	GPS only			
Observation window	6 hours			
Observation cut-off angle	5°			
Baseline forming strategy	OBS-MAX			
Ambiguity resolution strategy	Baseline length dependent:			
	a) < 20km: b) 20km to 180km: c) > 180km:	SIGMA on L1 and L2, SIGMA L5/L3 (wide-lane/narrow-lane), QIF (quasi iono-free)		
Ionosphere handling	Baseline length depende a) < 20km: b) 20km to 180km: c) 180km to 1000km:			
Troposphere handling	 Phase observables screening stage: a) A priori model DRY GMF, b) Site specific parameters WET GMF (ZTD spacing: 2h; no constraining), Final solution stage: a) A priori model: DRY GMF, b) Site specific parameters: WET GMF (ZTD spacing: 30min; no constraining; gradient model: CHENHER Chen and Herring (1997), gradient spacing: 6h) Product output: Relative constraining over 1 hour (3mm for ZTD and 0.5 mm for gradients). 			
Reference frame for epoch solution	IGS and ARGN IGb08 coordinates and velocities			
Method of referencing epoch solutions	Minimum constraining on all reference station positions.			


GNSS troposphere monitoring

PPP estimates: X,Y,Z, dt_{rec}, troposphere zenith delays (**ZTD**) and gradients Integrated Water Vapour (IWV):

$$ZHD = [0.0022768 m/mbar] \cdot \frac{P_0}{f(\phi, h)}$$

$$f(\phi, h) = 1 - 0.00266 \cos(2\phi) - 0.00000028h pprox 1$$

$$ZWD = ZTD - ZHD$$
$$IWV = \frac{ZWD}{10^{-6}(k_2' + k_3/T_m)R_v}$$

 P_0 - surface air pressure [mbar]

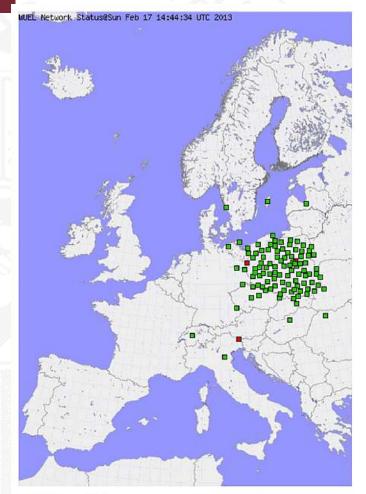
- h point height [m]
- ϕ point latitude [rad]
- k_2', k_3 empirical coefficients
 - $T_m 70.7 + 0.72 T_0$
 - T_0 surface air temperature
 - R_v 461.525 [J/(kg·K)]

Example of the Integrated Water Vapour (IWV) 2D distribution over the area of Poland calculated for November 7, 2012, shown as a time series with 4 hours interval

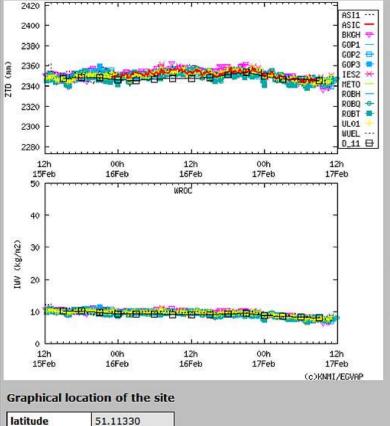
COST-716 Format

COST-716 V2.0a	E-GVAPII						
BIAL 12235M001	Bialystok (Pola	and)					
TRIMBLE NETRS	TRM41249.00	TZGD					
53.132083 23.138750	191.393	163.157	0	.000			
21-NOV-2012 09:00:00	21-NOV-2012 10:	39:30					
IGIG	BERN_V5.0		IGSULT		NONE		
60 60 1440							
0000065							
-999							
09 00 00 ffffffff 2345.4	4 1.5 -9.9	-9.9	-9.9	-9.9	-9.9 999.99 999.99	-9.99	-9.99 -9.999
0							
09 59 00 ffffffff 2349.	5 2.7 -9.9	-9.9	-9.9	-9.9	-9.9 999.99 999.99	-9.99	-9.99 -9.999
0							

ZTD mZTD ZWD IWV P T RH ZTD Gradients Grad. Errors TEC 2345.4 1.5 -9.9 -9.9 -9.9 -9.9 -9.9 999.99 999.99 -9.99 -9.99 -9.999


E-GVAP "WUEL" - The WUELS contribution

longitude


altitude

17.06200

140.54

http://egvap.dmi.dk

AC	num	bias	RMS	stddev
ASIC	56	2.0	3.9	3.3
GOP1	56	2.5	3.9	3.0
METO	56	2.6	4.4	3.5
ROBH	56	1.9	4.3	3.9
TEST				
ASI1	56	3.0	4.8	3.8
BKGH	55	5.7	6.6	3.5
GOP2	56	1.9	3.5	3.0
GOP3	55	3.1	4.8	3.7
IES2	56	2.6	4.4	3.5
ROBQ	56	2.0	4.6	4.1
ROBT	56	1.7	4.6	4.3
UL01	56	2.2	4.0	3.4
WUEL	56	4.3	5.7	3.7

Notes

 Statistics are updated daily

 GPS ZTD are interpolated to NWP analysis time

Oct 15th, 2012 to Apr 11 2015 (BSW 5.0)

NWM requirements for tropopshere products

Running projects / actions:

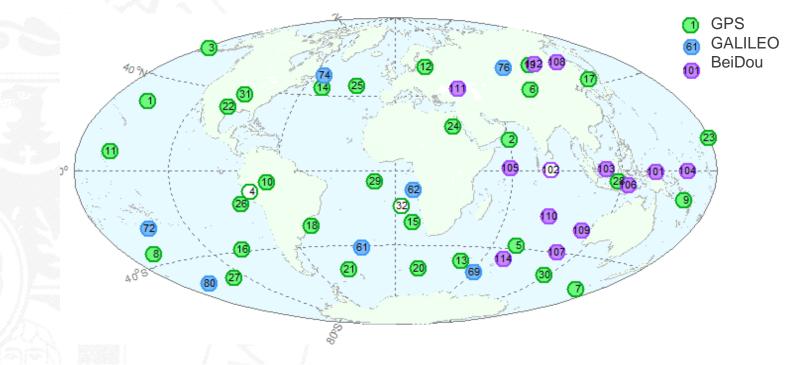
- EIG EUMETNET, GNSS Water Vapour Programme (E-GVAP-II)
- Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC)

Hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	2 h	1.5 h	1 h
Spatial coverage	Europe	Europe + N. America	Global
Horizontal Sampling	200 km	100 km	30 km

RT ZTD: GNSS-WARP software

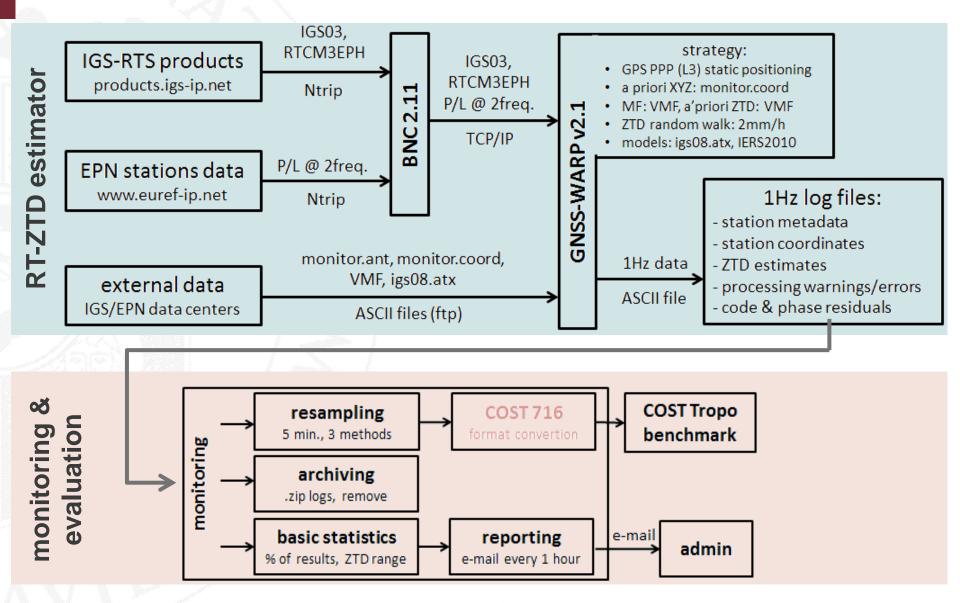
GNSS-WARP Wroclaw Algorithms for Real-time Positioning

- original, self-developed, state-of-the-art PPP software
- purpose: multi-GNSS RT-PPP & PPP-RTK algorithms development
- GNSS: GPS+GLO, GAL & BDS only with MGEX products, RT
- implemented in Matlab (2015a) + Instrument Control Toolbox
- BNC used as RTCM decoder of IGS RTS streams

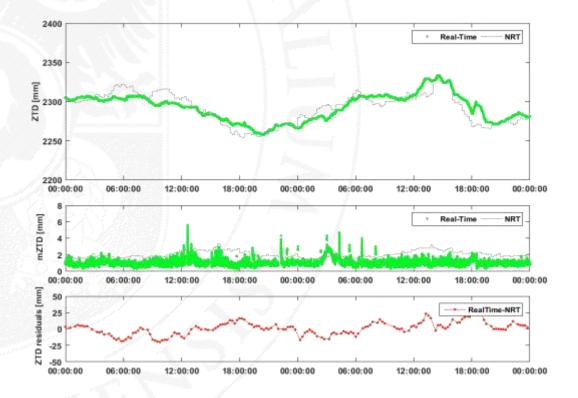

RT-ZTD optimization (GNSS-WARP v2.1m):

- redeveloped and optimized for multi-station, continuous processing
- performance: >10stations / 1 second @1CPU (currently: >200 stations every 60 seconds)

Strategy:


• PPP, static positioning, VMF, IGS03, IERS 2010 models

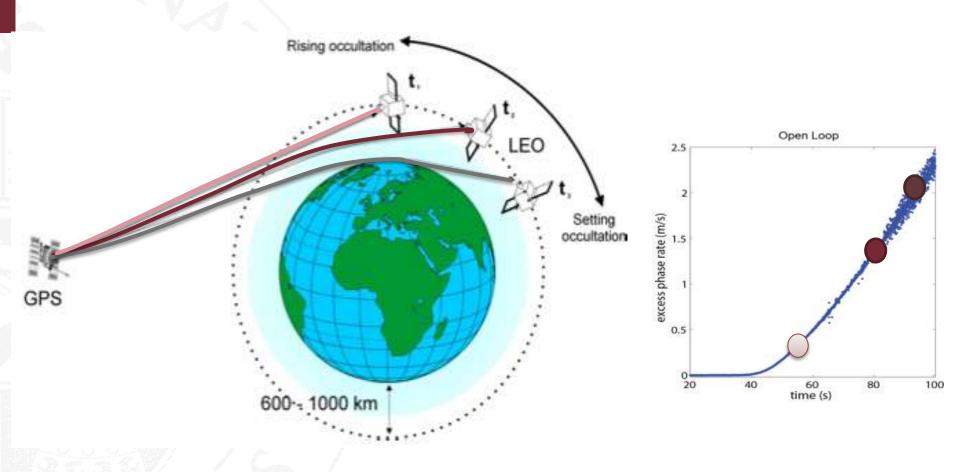
RT ZTD: GNSS-WARP - multi-GNSS status


	GPS	GLONASS	Galileo	BeiDou
SP3+CLK	operational	operational	operational	test phase
broadcast	operational	operational	operational	tracked
real-time	operational	IOD problems	test phase	not available

RT ZTD: GNSS-WARP software – real-time troposphere service

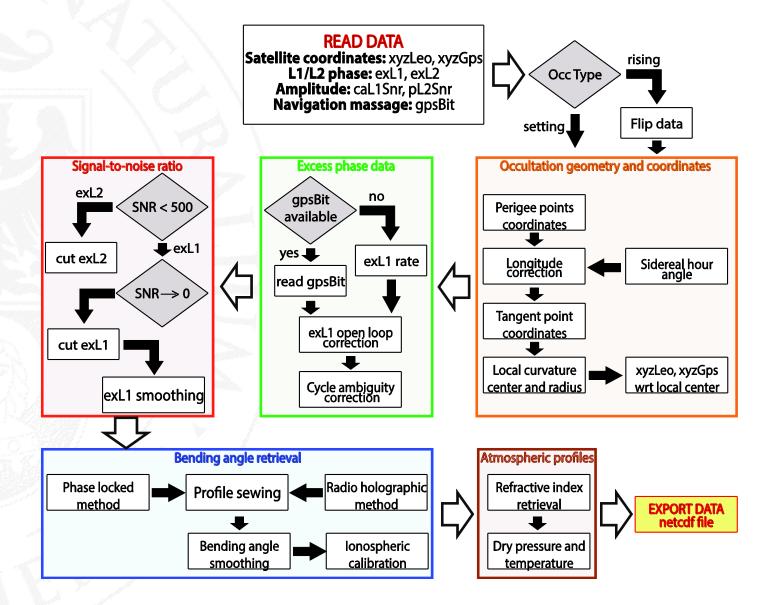
RT ZTD: COST benchmark 2 - real-time demonstrator (2)

- RTS IGS03 stream and 10 observation streams decoded with BNC, one week
- multi-station real-time processing with GNSS-WARP v2.1M
- comparison with NRT from MetOffice (ROBH, 15min sampling)
- purpose: optimize methodology, detect bugs & errors

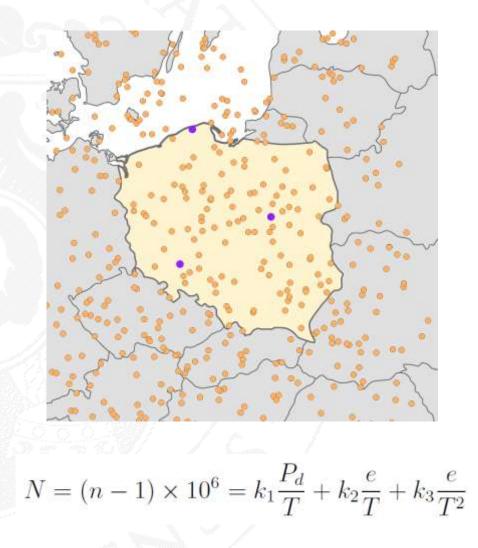

Station **WTZR** 13-14.06.2015 availability: 97% mean formal error: 1.1mm mean bias: -1.0mm StdDev of residuals: 15.5mm

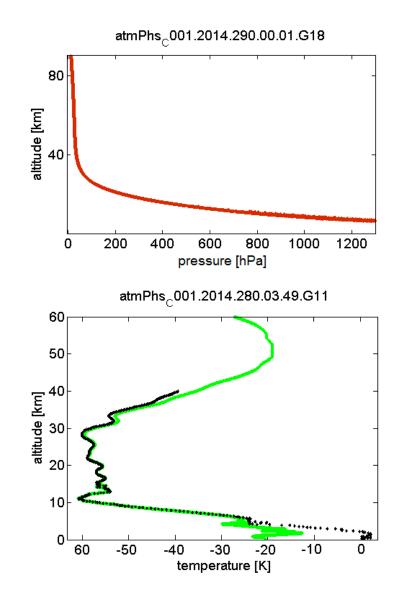
Towards RT-ZTD monitoring service in Poland (3)

RT ZTD service (under development, improvements required)
14 IGS + 19 EPN + 110 Leica SmartNet

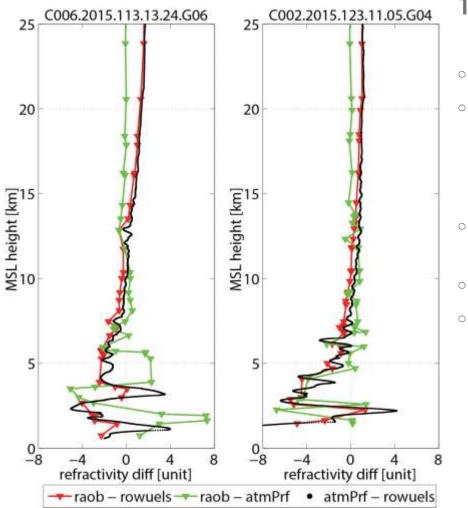

Sub-hourly ZTD	Treshold	Target	Optimal
Accuracy	15 mm	10 mm	5 mm
Timeliness	1 h	30 min	15 min
Spatial coverage	Europe	Europe to National	Regional to National
Horizontal Sampling	100 km	50 km	20 km

Radio occultation




Syndergaard, S., 1998. Modeling the impact of the earth's oblateness on the retrieval of temperature and pressure proles from limb bounding. Journal of Atmospheric and Solar-Terrestrial Physics 60 (2), 171{180.

RO WUELS software (1)


RO WUELS software (2)

RO WUELS software(3)

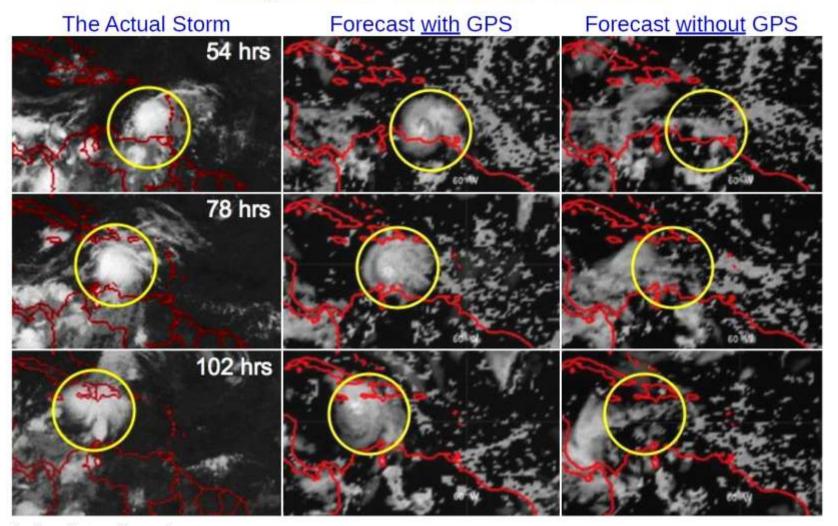
Near-real time FORMOSAT-3/COSMIC atmospheric profiles

1. Excess phase processing to dry atmospheric profiles

• Open Loop correction in the troposphere

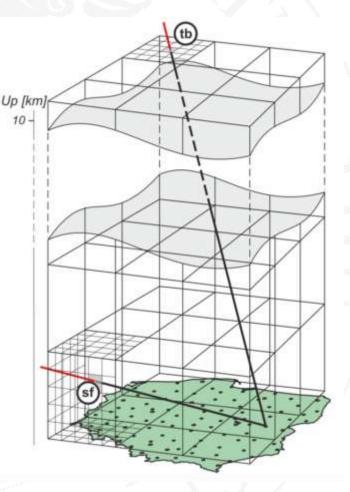
Radioholographic methods to resolve signal multipath:

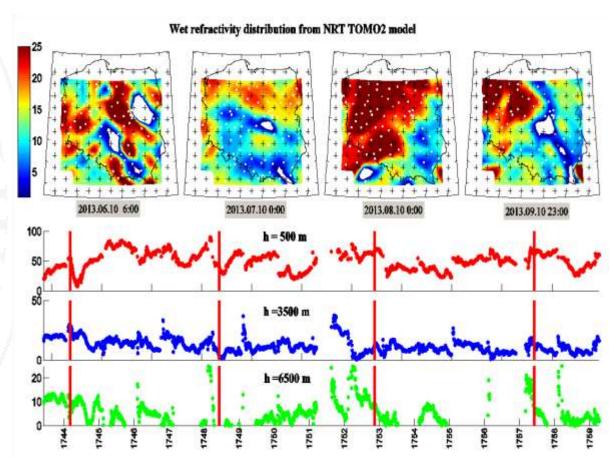
- Full Spectrum Inversion (FSI) and Phase Matching (PM)
- Inverse Abel transform to retrieve refractive index profile

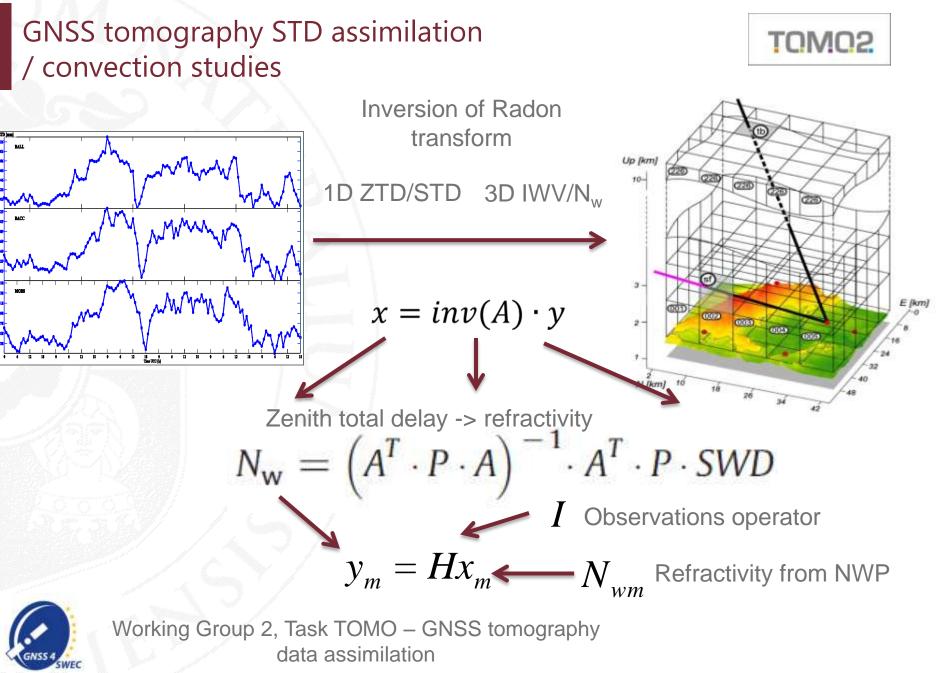

Forward operator to bending angle

- Validation with respect to CDAAC atmPrf and radiosonde profiles:
 - ± 100 km collocations
 - up to 4 units residuals for refractivity

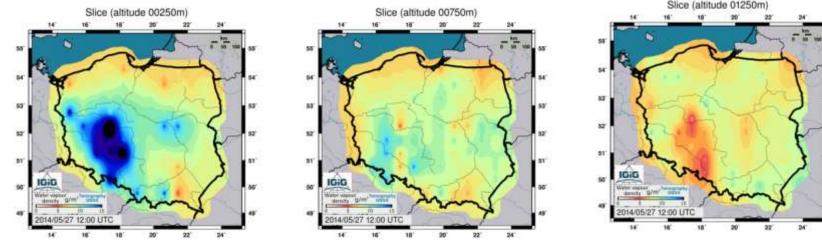
Data from Taiwan Radio Occultation Process System (TROPS) will be included.

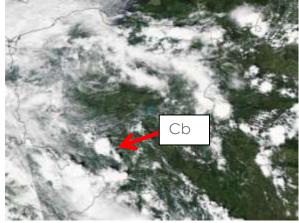

Impact of RO data assimilation


4-Day Ernesto Forecasts with WRF-ARW

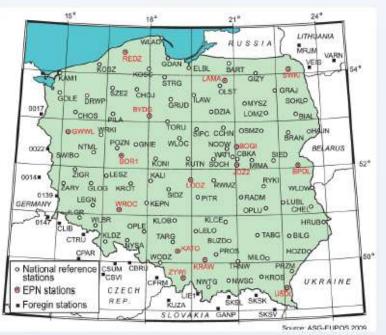


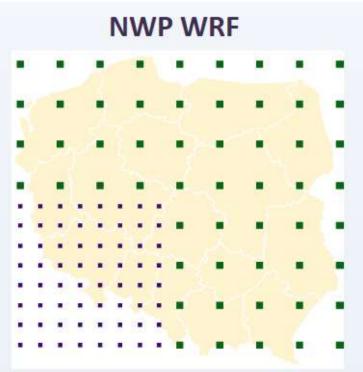
źródło: The Impact of GPS Radio Occultation Data on the Analysis and Prediction of Tropical Cyclones Bill Kuo and Hui Liu UCAR COSMIC WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES


TOMO2 : 3D NRT GNSS tomography model for area of Poland



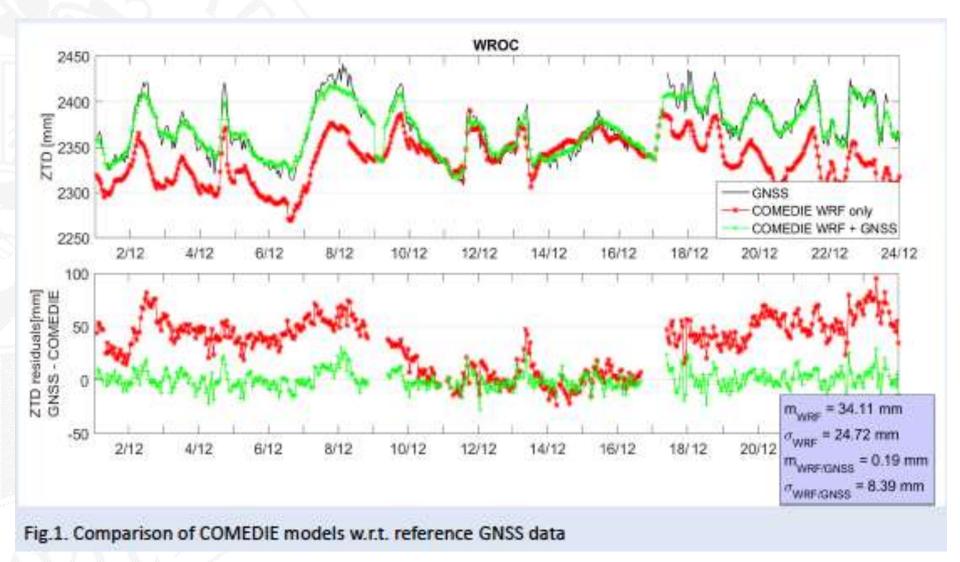
GNSS tomography 03.08.2014 – intensive rainfall TOMO2 Torrential rain associated with strong movements of the ascending air within the large convection cells


Tomography retrieved water vapour densities on 3 consecutive levels, convection cores should match with the increase of water vapour in bottom part (pool) and with sudden decreas of WV in cloud section (rain).


Geo satellite cloud image

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP - Data

GNSS



- 277 Polish stations
- near-real time
- ZTD with 1 h resolution
- product of Bernese software v5.2
- post-processing
- double-differenced

- WRF Weather Research and Forecasting
- 219x237 horizontal nodes
- 4x4 km² grid
- 47 vertical levels
- 24-hour forecasts at 0:00 UTC
- p, T, e with 1 h resolution

APPLICATION OF TROPOSPHERE MODEL FROM NWP AND GNSS DATA INTO RT PPP – Collocation - ZTD results

Conclusion

- 1. The NRT ZDT service is operational and stable in DD for 1h timeliness and will be developed to PPP and 15 min. timeliness.
- 2. The RT PPP is the alternative technique in GNSS meteorology and will be developed in future.
- 3. The RO service give us in future more profiles for calibration of 4D GNSS models of troposphere
- 4. The GNSS tomography is the next step of assimilation of 4D GNSS data in NWP models.
- 5. The integration of GNSS outputs and NWP models data is very important for support of RT positing services and meteorology.

GNSS&Meteo WUELS working group

Dr. Witold Rohm Chair of Meteo section Chair of IAG WG 4.3.6 Troposphere Tomography

GNSS meteorology

Prof. Jarosław Bosy Chair of WG Vice-Chair of IAG Sub-Commission 4.3: Atmosphere Remote Sensing

Positioning 🗸 SLR&GNSS

Pawel Hordyniec PhD student ROWUELS software

Dr. Jan Kaplon GNSS and Meteo NRT services

Karina Wilgan PhD student GNSS and meteo integration

Jan Sierny PhD student and IT support GNSS and meteo data base

Dr. Tomasz Hadas GNSS-WARP software Chair of IAG WG 4.3.4 Ionosphere and Troposphere Impact on GNSS Positioning

Dr. Krzysztof Sosnica Chair of IAG JSG0.21: Fusion of multi-technique satellite geodetic data

Kamil Kaźmierski PhD student Multi-GNSS

IAG Commission 4 Positioning and Applications Symposium Wroclaw Poland, September 4-7, 2016

WROCLAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES INSTITUTE OF GEODESY AND GEOINFORMATICS

Abstract submission: June 15, 2016 Notification of acceptance: July 1, 2016 Registration: July 31, 2016

http://www.igig.up.wroc.pl/iag2016/

Emerging, GNSS based tropospheric products

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Thank You! jaroslaw.bosy@up.wroc.pl

Presenting author: Professor Jaroslaw Bosy Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

www.up.wroc.pl